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Abstract: As RNA interference is becoming a standard method for
targeted gene perturbation, computational approaches to reverse
engineer parts of biological networks based on measure-able e�ects
of RNAi become increasingly relevant. The vast majority of these
methods use gene expression data, but little attention has been
paid so far to other data types. Here we present a method, which
can infer gene networks from high-dimensional phenotypic pertur-
bation e�ects on single cells recorded by time-lapse microscopy. We
use data from the Mitocheck project to extract multiple shape, in-
tensity and texture features at each frame. Features from di�erent
cells and movies are then aligned along the cell cycle time. Sub-
sequently we employ Dynamic Nested E�ects Models (dynoNEMs)
to estimate parts of the network structure between perturbed genes
via a Markov Chain Monte Carlo approach. Our simulation results
indicate a high reconstruction quality of this method. A reconstruc-
tion based on a 22 gene knock-downs yielded a network, where all
edges could be explained via the biological literature. The imple-
mentation of dynoNEMs is part of the Bioconductor R-package
nem.

1 Introduction

The availability of large RNAi screens has raised the interest in computational
approaches for reverse engineering parts of biological networks from measure-
able e�ects of targeted gene perturbations. Most existing methods make use
of gene expression data. The few attempts to reverse engineer gene networks
from phenotypic data include [BACP07], who rely on hierarchical clustering of



static images, and [KDZ+09] who use a probabilistic graphical model for only
one binary phenotypic variable in static images. To our knowledge, there is yet
no method for the inference of networks from time lapse microscopy based on
large numbers of statistical image features.

Nested E�ects Models (NEMs) are a class of probabilistic graphical models that
have been introduced originally by [MBS05] and extended substantially later on
by several other authors. In NEMs indirect, high-dimensional down-stream ef-
fects of multiple single-gene knock-downs are studied. NEMs allow for inferring
the signaling �ow between these perturbed genes on a transcriptional as well as
non-transcriptional level based on the measured intervention e�ects. [ASJ+09]
and [FPT11] extended the theory of NEMs to time series data, and applied it
to infer parts of a transcriptional network involved in murine stem cell develop-
ment. Originally NEMs assumed downstream e�ects to be measured via gene
expression pro�ling, but here we use phenotypic image features from movies
instead. Our movies were taken from the Mitocheck database [NWH+10], in
which ~20,000 human genes were silenced via RNAi and subsequently screened
for cell cycle defects. We use Dynamic Nested E�ects Models [FPT11] to esti-
mate the network between perturbed genes based on the dynamic response of
the phenotype along the cell cycle. The inference is based on a Markov Chain
Monte Carlo (MCMC) algorithm. The whole approach consisting of image fea-
ture extraction, estimation of perturbation e�ects and network estimation via
dynoNEMs is called MovieNEM and described in detail in our paper [FPTF13].
A schematic overview about our method is shown in Figure 1.

2 Main Results

2.1 Simulations

In our paper we conducted extensive simulations on reconstruction of randomly
selected sub-graphs of KEGG signaling pathways using simulated phenotypic
features. In general we observed a very high accuracy of our method, which
was notably dependent on the network size and network topology. Very densely
connected networks with many loops appeared to be harder to learn than acyclic
graphs. This can be explained by the fact that with many loops it is more
unlikely to observe a time delayed nested e�ects structure, which is exploited
by our method. We also investigated the in�uence of uninformative features on
our method. Here we observed a highly robust behavior of our method, which
underlines the success of the automated feature selection mechanism, which is
inbuilt in MovieNEM.
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Figure 1: Overview about MovieNEM: Individual movies are �rst fed into an
image processing pipeline consisting of four steps: (1) cell nuclei detection in
the individual movie frames; (2) tracking of the nuclei over time; (3) calcu-
lation of morphological features and (4) calculation of cell cycle time. After
image processing features are grouped according to the binned cell cycle time.
This allows for estimating time-wise perturbation e�ects. Several movies, each
showing one perturbation, are processed in this way and the perturbation like-
lihoods collected along the binned cell cycle time axis. This allows for applying
Dynamic Nested E�ects Models to infer the network between perturbed genes
via Markov Chain Monte Carlo.

2.2 Application to Movie Data

In our paper we applied MovieNEM to infer a network between 22 genes with
signi�cant phenotype. These 22 genes are mainly involved into cell cycle, tran-
scriptional regulation and cell di�erentiation. We looked at the network of
edge-wise posterior expectations, which scored better than 1000 random S-gene
permutations. All 122 edges could be mapped to known literature pathways.
On the other hand and not very surprisingly the literature mentions some addi-
tional interactions, which could not be observed in our estimated network. This
can have two reasons: Either the additional literature known interactions exist
in reality, but MovieNEM could not infer them or they do not exist in HeLa
cells and are hence not inferred. Notably, we can only infer interactions between
genes that show a clear phenotypic knock-down e�ect.

3 Conclusion

In our paper we have shown that it is possible to learn pathway structures from
phenotypic perturbation e�ects recorded in time-lapse movies. At the heart of



the method lies the extraction of morphological features yielding measurable
di�erences in cell phenotypes. We have developed a method to quantify these
di�erences such that an extended version of the dynoNEM method [FPT11] is
applicable. We have developed a novel Markov Chain Monte Carlo sampler for
network structure learning in order estimate the posterior likelihood of each in-
teraction. Our method allows for the inclusion of prior knowledge in a Bayesian
fashion. In summary MovieNEM o�ers an approach to exploit the rich infor-
mation that is present in phenotypic RNAi screening data using image based
techniques.
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