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Exploiting structural information for target
assessment

Andrea Volkamer and Matthias Rarey
Center for Bioinformatics, University of Hamburg, Bundesstrae 43,

20146 Hamburg, Germany
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Abstract: The amount of solved protein structures is continu-
ously growing. Pharmaceutical research recently recognized the
potential of computationally extracting information from this large
data pool and using them for homology-based knowledge trans-
fer to new structures. This article focuses on computational ap-
proaches for structure-based target assessment. Highlighted are
novel approaches for target classification, i.e., druggability or func-
tion prediction, and target comparison together with the underlying
methods for active site detection and description. Protein function
predictions, e.g., yielded accuracies between 54% and 81% for pre-
dicting the correct main class, subclass and substrate-specific sub-
subclass on a test set of 26632 pockets. Besides the presentation of
successful retrospective application studies of these methods, chal-
lenging tasks in the individual computational steps are discussed in
this article.

1 Introduction

Drug discovery is a cost and time consuming venture, thus, computa-
tional approaches have long entered the early drug development pipeline.
While the classical computer-aided application is screening of large com-
pound data sets for new lead compounds, recent advances in structure
elucidation and structural genomic projects, enabled high-throughput ap-
proaches for target screening, e.g., target prioritization, characterization
and comparison. Learning from what is known, extracting patterns and
transferring them to novel targets is one major goal in modern structure-
based computational approaches. In this article, we present our recent
developments addressing target assessment. Comparing proteins on a
functional level means comparing their centers of action. Starting from
the protein structure, our in house software DoGSite [VGGR10] can be ap-
plied for automated active site detection and representation by numerical
descriptors. For classification scenarios, the descriptors are incorporated
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into a support vector machine (SVM) to learn from the features of known
member of specific classes. In this context, SVMs have been trained for
target prioritization [VKG+12] and function annotation [VKRR13]. An-
other important task is the direct comparison of proteins by specific ac-
tive site features. In the novel approach TrixP [BVH+13], active sites
are represented by pharmacophoric triangles and closest homologous can
be identified with high-throughput by screening a pre-calculated index
consisting of active sites with known classification.

2 Methods

DoGSite [VGGR10] detects potential pockets solely based on the 3D
structure of a protein. For this purpose, a grid representation of the pro-
tein is used. Grid points are labeled as free or occupied, dependent on their
coverage by a protein atom. Subsequently, a Difference of Gaussian (DoG)
filter is applied to find positions on the protein surface where the location
of small sphere-like objects is favorable. Grid points are clustered into
subpockets based on the calculated DoG value and neighboring subpock-
ets are assigned to pockets. The DoGSiteScorer [VKG+12, VKRR13]
is a generic approach for structure-based classification scenarios. The
program automatically calculates numerical descriptors for self-predicted
pockets. These global descriptors include size, shape and physicochemical
properties of the pockets, e.g. volume, surface, ellipsoidal shape, enclo-
sure, hydrophilic surface fraction, functional groups, element and amino
acid compositions. Given a training data set with annotated classes, a
discriminant analysis is used to select those descriptors which separate
best between the different input target classes. Eventually, a support
vector machine is trained on a property of interest related to binding or
function. TrixP [BVH+13] is a novel method enabling fast index-based
binding site comparisons. Recognition features are encoded via a trian-
gular descriptor, holding physicochemical and shape information of the
binding site [SR09]. Triangles are spanned between all present hydrogen
bond donor, acceptor, and apolar point triplets and the shape of the bind-
ing site is captured by an 80-ray bulk, placed at the respective triangle’s
center. For efficient screening applications, an index with known binding
site descriptors can be built and unlimitedly queried. For a new query
protein, descriptors are calculated, the database is screened, and targets
with matching descriptors are returned, superimposed and ranked by their
estimated similarity to the query.
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3 Results and Discussion

In the following, the results of the presented methods and their contri-
butions to overcome the difficulties within the processed tasks are sum-
marized. The pocket prediction method, DoGSite, was evaluated on the
PDBBind and scPDB data set, containing 828 and 6754 structures, re-
spectively, and detected the true ligand binding site in over 92% of the
test cases. The major challenge in correct pocket and boundary detections
arises from the nature of pockets. In contrast to the crystallized repre-
sentatives, protein structures are flexible which produces a magnitude
of potential pocket shapes from being small to large, shallow to deep,
and homogeneous to highly branched. In this context, DoGSite espe-
cially convinced by its novel granular subpocket detection and a globular
pocket ceiling definition. DoGSiteScorer was trained and evaluated for
two different classification scenarios, namely druggability [VKG+12] and
function prediction [VKRR13]. The one prerequisite, when working with
machine learning techniques, is a large and reliable data set to train the
method on. Unfortunately, most available data sets are either too small or
suffer from wrong or miss-annotated structures. For target prioritization,
the method was trained on a subset of the recently published DD data
set containing 1069 druggable, difficult and undruggable protein pockets
and yielded accuracies of 88% in the testing phase. Next, to allow for en-
zymatic function predictions on different granularity levels, we created a
data set of over 26000 enzymatic pockets and classified them with respect
to the enzymatic classification (EC) scheme. Subsequently, models for pre-
dicting enzyme class, subclass or substrate-specificity based on structural
features were build. Cross-validation studies showed accuracies of 68%
for correct main class prediction and accuracies between 63% and 81% for
the six subclasses. Substrate-specific recall rates for a kinase subset were
54%. Finally, our active site comparison tool TrixP was evaluated on
several screening scenarios based on the scPDB data set. Using a subset
of 769 similar and dissimilar protein pairs, a similarity cut-off was intro-
duced with which similar pairs could be recovered in 82% of the cases,
while dissimilar pairs were discarded with 99.5%. Screening the complete
data set with four query proteins, 84-100% of the index-contained family
members could be identified. Even correct subfamilies could be assigned
for a small kinase data set. Again, flexibility upon ligand binding chal-
lenges structure-based comparison methods. The consideration of partial
similarities based on matching triangle descriptors in combination with
introduced tolerance values, allows TrixP to recover similarities between
partially different conformations.
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4 Conclusion

Due to the continuous growth in elucidated structures, learning from
known structures has become more and more important, increasing the de-
mand of fast and reliable computational approaches for target assessment.
A set of software approaches has been presented which can be used for
active site detection, target druggability and function prediction as well as
target comparison. The methods have been evaluated on large data sets
and showed good results in retrospective applications. A major drawback
of automated methods is generally the dependence on the quality of the
structures, the size of the available training data, the reliability of the
annotated classes of their members as well as the necessary homology to
securely transfer a specific property. Nevertheless, such methods allow to
perform high-throughput target screening and, thus, to think outside the
box, and detect similarities and cross-links between structures that would
not have been found by hand.
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Abstract: The prioritization of candidate disease genes or other 
molecules is often based on heterogeneous data. Nevertheless, 
most prioritization methods do not allow for a straight-forward 
integration of the user’s own input data. Therefore, we 
developed NetworkPrioritizer, a Cytoscape plugin that enables 
the integrative network-based prioritization of bio-molecules. 
Our versatile software tool computes a number of important 
centrality measures to rank nodes based on their relevance for 
the connectivity in weighted and unweighted networks. As 
further novelty, it provides different methods to aggregate and 
compare rankings. NetworkPrioritizer and its documentation are 
freely available at http://www.networkprioritizer.de 

1 Introduction 

To elucidate the genetic foundations of human diseases, it is crucial to identify 
genes that might predispose to or cause specific diseases. Computational 
prioritization methods exploit the available biomedical knowledge to rank 
candidate genes according to their disease relevance. Many methods integrate 
multiple data sources, e.g., gene expression, protein interactions, and 
overlapping disease characteristics [DoKA12]. Integrated information of 
biological relationships and interactions is often represented as network. The 
connections between known disease genes and the remaining genes in a 
network are of particular interest as they can point to new disease genes. 

The majority of prioritization methods are available only as web 
services [TCNM10]. Since the latter require the upload of the user’s input data, 
they are not well suited to analyze confidential data. Furthermore, most web 
services rely on pre-defined background data and do not allow the user to 
include own data, to control the data integration, or to modify the aggregation 
of multiple rankings [DoKA12, TCNM10]. Existing Cytoscape plugins for 
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prioritization are also subject to a number of limitations. For instance, 
cytoHubba [LCWC08] and GPEC [LeKw12] rank network nodes focused on 
their close neighborhood or the steady-state probability of a random walk with 
restart, respectively. Neither supports further analysis or aggregation of 
rankings. The plugin NetworkAnalyzer [ARSL08] and the Java application 
CentiBiN [JuKS06] feature a large set of centrality measures, but cannot 
compute them for a user-defined set of seed nodes or for weighted networks. 

Here, we present NetworkPrioritizer [KaDA13], a novel Cytoscape 
plugin for the integrative network-based prioritization of candidate genes or 
other molecules. It comprises two main functionalities. First, it facilitates the 
estimation of the relevance of network nodes, e.g., candidate genes, with 
regard to a set of seed nodes, e.g., known disease genes. Second, the plugin 
allows for the user-guided aggregation and comparison of multiple rankings. 

2 Software Features 

NetworkPrioritizer ranks nodes based on their relevance for the network 
connectivity, estimated by a number of centrality measures based on shortest 
paths and random walks (see web site). Closeness quantifies the distance of a 
node to the rest of the network. Betweenness measures the influence of a node 
on the paths connecting other nodes. These measures interpret all networks as 
undirected. NetworkPrioritizer can handle unweighted and weighted networks 
with user-adjustable effect of the edge weights on the computed centralities 
[OpAS10]. A particular feature of NetworkPrioritizer is the computation of the 
centrality measures with regard to a set of seed nodes. 

In contrast to other prioritization tools, NetworkPrioritizer offers 
multiple methods to aggregate and compare multiple primary rankings. 
Weighted Borda Fuse (WBF) is a generalization of the popular Borda count 
[Saar99] and essentially ranks nodes according to their weighted mean rank in 
the primary rankings. Weighted AddScore Fuse (WASF) calculates the 
weighted sum of scores for each node in the primary rankings and awards a 
higher rank the larger this sum is. WBF and WASF can be used to identify 
candidate genes that attain high ranks in all primary rankings. If the primary 
rankings are based on scores on the same scale, WASF is more distinctive and 
thus more accurate than WBF. MaxRank Fuse (MRF) assigns each node the 
highest rank achieved in any primary ranking. MRF can quickly identify 
candidates with a high rank in at least one primary ranking. Furthermore, 
NetworkPrioritizer provides two widely used measures of ranking distance, the 
Spearman footrule and the Kendall tau [DKNS01]. The Spearman footrule is 
the sum of the rank differences of all nodes in two compared rankings. The 
Kendall tau is the number of nodes with different ranks. 
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3 Benchmark and Case Study 

We evaluated the performance of NetworkPrioritizer in a comprehensive 
benchmark on data described in [ScLA10]. Briefly, this data contains artificial 
quantitative trait loci for 99 diseases extracted from OMIM [HSAB05] that 
have at least three known associated disease proteins. Disease-specific protein-
protein interaction networks were extracted from BioMyn [RaLA12] and 
complemented by functional similarity links inferred from FunSimMat 
[ScLA10]. The receiver operating characteristics (ROCs) computed in a leave-
one-out cross-validation are shown in Fig. 1. The shortest path-based centrality 
measures performed best, reaching areas under the ROC curve (AUCs) of up 
to 0.90. Notably, aggregating the primary rankings further improved the 
performance and resulted in AUCs from 0.87 to 0.92 (superior to the AUC of 
0.85 achieved by MedSim on the same data).  

As a case study, we applied NetworkPrioritizer to a Crohn’s Disease 
(CD) related protein network. Protein-protein interactions and functional 
similarity links were compiled from BioMyn and FunSimMat, respectively, for 
proteins encoded by genes in CD-associated loci [FMBW10]. Proteins 
associated with inflammatory bowel disease (IBD), or CD as a subtype of IBD, 
were used as seed nodes (see web site). The 10 top-ranked proteins (HLA-B, 
SMAD3, CCL2, NOTCH1, STAT5A/B, HLA-A2/26/66, BECN1) function in 
the ‘immune system process’, ‘response to stress’, ‘signal transduction’, and 
‘homeostatic process’ according to their Gene Ontology annotation. Since 
these processes are closely related to IBD [ZhLi12], the proteins are promising 
candidates for further experimental studies.  

 

(a) (b)

Fig. 1: (a) ROC for degree centrality (DC), random walk betweenness (RWB), 
random walk receiver closeness (RWRC), random walk transmitter closeness 
(RWRC), shortest path betweenness (SPB), and shortest path closeness (SPB). 
(b) ROC for the aggregation of all primary rankings using MRF (MRF-all), the 
aggregation of SPB and RWB (MRF-B), the aggregation of all rankings (equally 
weighted) using WASF (WASF-all-1), the aggregation of all rankings but DC 
(equally weighted) using WASF (WAS-all-1-NOD), and the aggregation of all 
rankings (equally weighted) using WBF (WBF-all-1). 
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4 Conclusions 

NetworkPrioritizer enables the ranking of individual network nodes based on 
their relevance for connecting a set of seed nodes to the rest of the network. 
The Cytoscape plugin computes centrality measures for unweighted and 
weighted networks and, as a particular novelty, provides rank aggregation 
methods and ranking distance calculations. Its versatility makes 
NetworkPrioritizer a very useful tool for integrative network-based 
prioritization of candidate disease genes and proteins or other molecules. 
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Abstract: As RNA interference is becoming a standard method for
targeted gene perturbation, computational approaches to reverse
engineer parts of biological networks based on measure-able e�ects
of RNAi become increasingly relevant. The vast majority of these
methods use gene expression data, but little attention has been
paid so far to other data types. Here we present a method, which
can infer gene networks from high-dimensional phenotypic pertur-
bation e�ects on single cells recorded by time-lapse microscopy. We
use data from the Mitocheck project to extract multiple shape, in-
tensity and texture features at each frame. Features from di�erent
cells and movies are then aligned along the cell cycle time. Sub-
sequently we employ Dynamic Nested E�ects Models (dynoNEMs)
to estimate parts of the network structure between perturbed genes
via a Markov Chain Monte Carlo approach. Our simulation results
indicate a high reconstruction quality of this method. A reconstruc-
tion based on a 22 gene knock-downs yielded a network, where all
edges could be explained via the biological literature. The imple-
mentation of dynoNEMs is part of the Bioconductor R-package
nem.

1 Introduction

The availability of large RNAi screens has raised the interest in computational
approaches for reverse engineering parts of biological networks from measure-
able e�ects of targeted gene perturbations. Most existing methods make use
of gene expression data. The few attempts to reverse engineer gene networks
from phenotypic data include [BACP07], who rely on hierarchical clustering of
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static images, and [KDZ+09] who use a probabilistic graphical model for only
one binary phenotypic variable in static images. To our knowledge, there is yet
no method for the inference of networks from time lapse microscopy based on
large numbers of statistical image features.

Nested E�ects Models (NEMs) are a class of probabilistic graphical models that
have been introduced originally by [MBS05] and extended substantially later on
by several other authors. In NEMs indirect, high-dimensional down-stream ef-
fects of multiple single-gene knock-downs are studied. NEMs allow for inferring
the signaling �ow between these perturbed genes on a transcriptional as well as
non-transcriptional level based on the measured intervention e�ects. [ASJ+09]
and [FPT11] extended the theory of NEMs to time series data, and applied it
to infer parts of a transcriptional network involved in murine stem cell develop-
ment. Originally NEMs assumed downstream e�ects to be measured via gene
expression pro�ling, but here we use phenotypic image features from movies
instead. Our movies were taken from the Mitocheck database [NWH+10], in
which ~20,000 human genes were silenced via RNAi and subsequently screened
for cell cycle defects. We use Dynamic Nested E�ects Models [FPT11] to esti-
mate the network between perturbed genes based on the dynamic response of
the phenotype along the cell cycle. The inference is based on a Markov Chain
Monte Carlo (MCMC) algorithm. The whole approach consisting of image fea-
ture extraction, estimation of perturbation e�ects and network estimation via
dynoNEMs is called MovieNEM and described in detail in our paper [FPTF13].
A schematic overview about our method is shown in Figure 1.

2 Main Results

2.1 Simulations

In our paper we conducted extensive simulations on reconstruction of randomly
selected sub-graphs of KEGG signaling pathways using simulated phenotypic
features. In general we observed a very high accuracy of our method, which
was notably dependent on the network size and network topology. Very densely
connected networks with many loops appeared to be harder to learn than acyclic
graphs. This can be explained by the fact that with many loops it is more
unlikely to observe a time delayed nested e�ects structure, which is exploited
by our method. We also investigated the in�uence of uninformative features on
our method. Here we observed a highly robust behavior of our method, which
underlines the success of the automated feature selection mechanism, which is
inbuilt in MovieNEM.
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Figure 1: Overview about MovieNEM: Individual movies are �rst fed into an
image processing pipeline consisting of four steps: (1) cell nuclei detection in
the individual movie frames; (2) tracking of the nuclei over time; (3) calcu-
lation of morphological features and (4) calculation of cell cycle time. After
image processing features are grouped according to the binned cell cycle time.
This allows for estimating time-wise perturbation e�ects. Several movies, each
showing one perturbation, are processed in this way and the perturbation like-
lihoods collected along the binned cell cycle time axis. This allows for applying
Dynamic Nested E�ects Models to infer the network between perturbed genes
via Markov Chain Monte Carlo.

2.2 Application to Movie Data

In our paper we applied MovieNEM to infer a network between 22 genes with
signi�cant phenotype. These 22 genes are mainly involved into cell cycle, tran-
scriptional regulation and cell di�erentiation. We looked at the network of
edge-wise posterior expectations, which scored better than 1000 random S-gene
permutations. All 122 edges could be mapped to known literature pathways.
On the other hand and not very surprisingly the literature mentions some addi-
tional interactions, which could not be observed in our estimated network. This
can have two reasons: Either the additional literature known interactions exist
in reality, but MovieNEM could not infer them or they do not exist in HeLa
cells and are hence not inferred. Notably, we can only infer interactions between
genes that show a clear phenotypic knock-down e�ect.

3 Conclusion

In our paper we have shown that it is possible to learn pathway structures from
phenotypic perturbation e�ects recorded in time-lapse movies. At the heart of
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the method lies the extraction of morphological features yielding measurable
di�erences in cell phenotypes. We have developed a method to quantify these
di�erences such that an extended version of the dynoNEM method [FPT11] is
applicable. We have developed a novel Markov Chain Monte Carlo sampler for
network structure learning in order estimate the posterior likelihood of each in-
teraction. Our method allows for the inclusion of prior knowledge in a Bayesian
fashion. In summary MovieNEM o�ers an approach to exploit the rich infor-
mation that is present in phenotypic RNAi screening data using image based
techniques.
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Abstract: Annotations of genomic features and their subcompo-
nents can be conveniently and intuitively described by annotation
graphs, a representation also serving as the basis for common text
formats like GFF3. However, current bioinformatics toolkits do
not make use of the full expressiveness of such a representation.
We present the GenomeTools, an efficient software library allowing
for convenient development of new software tools which create or
process (e.g. augment) annotation graphs. The GenomeTools API
is modeled around the annotation graph concept, making it easy
to access the information contained in the annotation and to de-
sign graph-based algorithms based on them. The object-oriented
GenomeTools library is optimized to keep a small memory footprint
for large annotation sets (such as variation annotations like SNVs)
by careful data structure design and by implementing an efficient
pull-based approach for sequential processing of annotations. It also
provides bindings to a variety of script programming languages (like
Python, Lua and Ruby) sharing a common programming interface.

1 Introduction

Genomic annotations connect raw sequence information to the associated
structural and functional properties, such as gene location, gene struc-
ture, and transcript variety. In the scope of bioinformatics software, they
can act as both output or input. For instance, in a gene prediction tool,
the locations of each detected gene, transcript, and their exons are typical
annotation output. Moreover, repeat instances like transposon insertions,
tRNA genes, and even regulatory regions like transcription factor binding
sites are common constituents of genomic annotations output by specific
bioinformatic software tools. As input, annotations are important – for
example when integrated with experimental data – as the basis for hypoth-
esis generation aided by software tools (e.g. custom genome browsers). In
some cases, the more fine-grained structure of the genomic features’ com-
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  gene 
1000-9000

TF_binding_site
1000-1012

mRNA
1050-9000

mRNA
1050-9000

mRNA
1300-9000

exon
1050-1500

exon
1300-1500

exon
3000-3902

exon
5000-5500

exon
7000-9000

##gff-version   3
##sequence-region    chr1 1 1497228
 chr1 . gene 1000 9000 . + . ID=gene1;Name=EDEN
 chr1 . TF_binding_site 1000 1012 . + . Parent=gene1
 chr1 . mRNA 1050 9000 . + . ID=mRNA1;Parent=gene1
 chr1 . mRNA 1050 9000 . + . ID=mRNA2;Parent=gene1
 chr1 . exon 1050 1500 . + . Parent=mRNA1,mRNA2
 chr1 . mRNA 1300 9000 . + . ID=mRNA3;Parent=gene1
 chr1 . exon 1300 1500 . + . Parent=mRNA3
 chr1 . exon 3000 3902 . + . Parent=mRNA1,mRNA3
 chr1 . exon 5000 5500 . + . Parent=mRNA1,mRNA2,mRNA3
 chr1 . exon 7000 9000 . + . Parent=mRNA1,mRNA2,mRNA3
###

(a) (b)

Figure 1: (a) Part of a GFF3 file describing a gene with three possible alterna-
tively spliced transcripts. (b) Corresponding annotation graph consisting of a
single connected component.

ponents is important as well, for example when utilizing information about
gene and transcript structure to perform a census of alternative splicing
events [ELM+05]).

To establish a standard model for structured genomic annotations, Eil-
beck et al. [ELM+05] introduced the concept of annotation graphs as a
generic representation of genomic annotations for prokaryotic and eukary-
otic genomes. Annotation graphs are directed acyclic graphs (DAGs) in
which nodes represent genomic features and edges represent part-of re-
lationships between them. Nodes are typed according to the Sequence
Ontology (SO), a standardized set of terms and relationships describing
genomic entities [ELM+05]. For example, in the gene example mentioned
above, mRNA nodes can be connected to gene nodes to express that the
transcripts are parts (or subfeatures) of the gene (which has no parent
and hence is the top-level node). Nodes of the exon type are in turn
connected to mRNA nodes as the exons are constituents of the mRNA
feature (Fig. 1b). Due to the DAG structure, exons can also belong to
multiple transcripts. Gene nodes do not have a parent. Hence each gene
is represented as a connected component (CC, for short) in the annota-
tion graph. SO-compliant annotations are typically given as plain text in
the Generic Feature Format, Version 3 (GFF3), which basically describes
the annotation graph by tagging nodes with plain text attributes speci-
fying the part-of relations between parent and child nodes in the graph
(Fig. 1a).

We have identified several key requirements to be satisfied by a software
toolkit for annotation processing in order to make full use of the informa-
tion contained within such structured annotation files. Besides (obviously)
capturing the graph structure of annotation graphs using appropriate data
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structures and access methods, the software should not restrict the user to
a specific subset of features (e.g. genes) but support all SO terms instead.
Due to the large size of annotations, a space efficient representation is
also important. This encompasses efficient handling of common sequen-
tial processing operations and non-redundant storage of repetitive data
such as sequence identifiers. Another requirement is a simple yet flexi-
ble and extensible application programming interface (API) for accessing
annotations. It should also support accessing the sequence, a genomic
feature refers to, a task complicated by the fact that the sequence is of-
ten stored separately from the annotation and not labeled with a unique
or standardized identifier. Finally, flexible and validating parsers are re-
quired for the most common annotation formats.

Generic software satisfying these desired features is scarce. Previous pop-
ular programming environments for bioinformatics show widely varying
levels of support for handling genomic annotations and none of them has
all the required features.

2 Implementation

The GenomeTools toolkit, which in contrast has all the required features,
uses an object-oriented approach to represent nodes in the annotation
graph as individual implementations of different classes with a common
genome node interface, modeled in accordance with the GFF3 specifica-
tion. Each node contains the genomic location (position, chromosome,
etc.) of the feature it represents and additional attributes, given as key-
value pairs.

The annotation graph can be partitioned into weakly connected compo-
nents based on the connectivity of its underlying undirected graph. Using
the GenomeTools API, CCs can be traversed using iterators and modified
by changing attributes or adding new child nodes. All actions performed
on nodes are implemented as node streams. Streams are active program
components which either create nodes, modify them or output them. The
basic approach is to sequentially pass a set of CCs (accessed through their
top-level nodes) through a stream of chains, possibly applying modifica-
tions before passing a CC to the successor stream. This approach makes
use of lazy evaluation and is very memory-efficient if input data is appro-
priately sorted.

As a software development kit, the GenomeTools are available as a shared
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library which provides interface headers to implement custom streams,
allowing for interoperability between native GenomeTools streams and
custom ones. To access the GenomeTools functionality from scripting
languages, we have created bindings for the languages Java, Ruby, Python
and Lua using foreign function interfaces acting as a thin wrapper layer
around the library, allowing to write streams in other languages than C.

Input and output streams for various formats (GFF3, GVF, GTF, BED)
are available. We have taken special care to handle boundary cases which
may occur in GFF3 input to finally ensure that parsed graphs are al-
ways correct – even when the input does not fully comply to the GFF3
specification. For instance, GFF3 allows features with the same ID at-
tribute spanning multiple feature lines. Such a multi-feature implicitly
specifies parent nodes. For each part of a multi-feature, a separate node
in the feature DAG is introduced and tagged with a special multi-feature
flag. Furthermore, one of the nodes comprising the multi-feature is dis-
tinguished as a representative. Since no explicit top-level node is present
for these multi-feature nodes, we introduce an artificial pseudo-feature as
a new unique top-level feature node. All features comprising the multi-
feature become the children of a new pseudo-feature, to guarantee that
each CC has a top-level node.

The GenomeTools provide mechanisms for persistent storage of annota-
tion and indexed random access to features overlapping query regions.
These are useful to, for example, develop genome browsers or similar soft-
ware visualizing genome annotations. Finally, the GenomeTools library
provides techniques for an efficient sequence representation which can be
combined with the annotations [SK12]. It also provides a large variety
of useful sequence analysis functionality (index construction and access,
annotation visualization, and much more) as well as a collection of tools,
which make use of the library to solve real-world bioinformatics tasks.
These tools have been published separately1.

3 Results

We have applied the GenomeTools, BioPerl and SeqAn C++ toolkits to
parse a variety of annotation examples (gene annotations up to several GB
in size, SNV annotations, repeat annotations) into their own representa-

1See http://genometools.org or the full GenomeTools paper [GSK13] for a com-
plete list of associated publications.
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tion and measured the time and space requirement. The GenomeTools
library was consistently both the fastest and most memory-efficient of
the three toolkits, while also being the only one with the most complete
support for annotation graphs. For example, for processing the TAIR
A. thaliana annotation [RBB+03] the SeqAn (BioPerl) representation re-
quired up to 11 times (34 times) more space than the GenomeTools repre-
sentation. Regarding running times, the GenomeTools library was able to
create full annotation graphs from the input data in a matter of seconds,
while the competitors required up to several minutes.

4 Conclusion

We have developed a library for efficient handling of structured genomic
annotations which retains the expressiveness of the annotation graph ap-
proach, thus allowing a developer to implement new algorithms very close
to the intuitive theoretical concept. A simple concept of defining a pro-
cessing pipeline using the the stream and visitor patterns facilitates easy
interoperability between individual processing components. Tools built
using the GenomeTools library require less memory and are faster than
previous toolkits. We expect the GenomeTools software to continue being
a basis for new software tools for an ever increasing number of sequence
analysis tasks. The full paper [GSK13] was recently published in its pre-
liminary form.
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Abstract: Transcription activator-like effectors (TALEs) are in-
jected into host plant cells by Xanthomonas pathogens to function
as transcriptional activators. Their DNA-binding domain is com-
posed of conserved amino acid repeats containing repeat-variable
diresidues (RVDs) that determine DNA binding specificity.

We present TALgetter, a new approach for predicting TALE tar-
get sites based on a statistical model. The predictions of TALgetter
indicate a previously unreported positional preference of TALE tar-
get sites relative to the transcription start site. In addition, several
TALEs are predicted to bind to the TATA-box, which might con-
stitute one general mode of transcriptional activation by TALEs.

1 Introduction

Transcription activator-like effectors (TALEs) are injected into the cells
of host plants by plant-pathogenic Xanthomonas bacteria, where they act
as transcription factors for the benefit of the pathogen [B+09]. The hosts
of different Xanthomonas strains span a variety of important crop plants
including rice, sweet orange, tomato, pepper, and cabbage.

The DNA-binding domain of TALEs is composed of highly conserved
tandem repeats, where each repeat usually spans 34 amino acids. These
repeats bind to the nucleotides of a DNA target site in a contiguous, non-
overlapping fashion. The DNA-specificity of an individual repeat depends
on the two amino acids at position 12 and 13, termed repeat-variable
diresidues (RVDs) [B+09, MB09].

The computational prediction of virulence targets of natural TALEs is
a key step to provide candidates for subsequent experimental validation.
However, less than 30 virulence targets have been validated, often only
one for an individual TALE. This set is complemented by a few hundred
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artificial target sites from reporter assays. Hence, novel approaches are
required that i) make use of the available data in a holistic manner, and
ii) allow for predicting target sites of TALEs without any known target
site. In [GWR+13], we propose such an approach for predicting TALE
target sites called TALgetter.

2 Computational predictions provide insights into the
biology of TALE target sites

In [GWR+13], we propose TALgetter, which uses a new statistical model
representing importance of RVDs and their binding specificity indepen-
dently in a local mixture model. The concept of importance is related
to the efficiency of RVDs [S+12], but additionally affects the penalty for
non-matching nucleotides. In the proposed model, the importance and
binding specificity of an RVD are independent of its context in the TALE.
For details of the statistical model, we refer to [GWR+13].

In contrast to previous approaches, the parameters of this model are es-
timated computationally, where different TALEs and their known target
sites can be combined in a common training set due to independence
assumptions. TALgetter is part of version 2.1 of the open-source Java
library Jstacs [G+12].

In [GWR+13], we show that TALgetter yields an improved prediction
performance compared to the existing approach, Target Finder of the
TALE-NT suite [D+12]. Using TALgetter, we predict target sites of Xan-
thomonas TALEs in the important crop plants rice and sweet orange.
These predictions elucidate novel putative virulence targets of several
TALEs (c.f. Tables 6 to 8 of [GWR+13]).

In addition, we demonstrate that computational approaches are able to
gain new insights into the biology of TALE targeting. Specifically, we
combine predictions of TALgetter with gene expression data to identify
functional TALE target sites. We find that functional target sites are pref-
erentially located in a region from 300 bp upstream to 200 bp downstream
of the transcription start (c.f. Figure 7 of [GWR+13]). Our predictions
also indicate that many TALEs bind to the TATA-box in the promoters of
their target genes. Based on these observations, we propose four biologi-
cal models (c.f. Figure S7 of [GWR+13]) that may explain the apparent
target site preference of TALEs.

The modular architecture of TALEs allows for a rearrangement of repeats
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to easily generate any desired DNA-specificity. Hence, TALEs have be-
come a preferred biotechnology tool for targeted DNA binding. Although
TALgetter has been created for predicting virulence targets of natural
TALEs, it is readily applicable to biotechnology problems as, for instance,
the off-target prediction of artificial TALE activators.

TALEs are also the basis of TALE nucleases (TALENs), which have been
established as a second genome-editing technique besides zinc-finger nu-
cleases [GGB13]. In TALENs, the DNA-binding domain of TALEs is fused
with a Fok1 endonuclease domain, where homo- or hetero-dimers of TAL-
ENs specifically cut the DNA double strand. Although TALENs cut DNA
highly specific, undesired off-targets in addition to the targeted genomic
region remain an important issue [O+13]. Recently [GBP], we developed
a novel tool for the genome-wide prediction of TALEN off-targets, named
TALENoffer. TALENoffer is based on the same statistical model as TAL-
getter, and features an optimized runtime to scan complete genomes for
TALEN off-target sites within a few minutes.

3 Availability

Web-applications of TALgetter and TALENoffer are available at http:

//galaxy.informatik.uni-halle.de, and can also be installed in a lo-
cal Galaxy [B+10] server. In addition, we provide command line ver-
sion of TALgetter and TALENoffer at http://jstacs.de/index.php/

TALgetter and http://jstacs.de/index.php/TALENoffer, respectively.
TALgetter also allows users to estimate new model parameters from cus-
tom training data. Hence, users can adapt the parameters of the TAL-
getter model to improved sets of validated TALE target sites, which are
to be expected in the near future.

4 Talk outline

We start our talk with an introduction to TALEs and the specific bioinfor-
matics problems that arise in the prediction of TALE target sites. After
a brief description of the statistical model of TALgetter, we focus on
the biological findings that have been discovered using our computational
predictions, namely the previously unreported target site preferences of
TALEs and biological models explaining these. We finally succinctly in-
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troduce TALENoffer for predicting off-target sites of TALE nucleases.
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Abstract: It is common knowledge that the human breath contains
metabolites allowing to infer a patient’s health status, especially for dis-
eases related to the respiratory system. This information is encoded in
the “volatolom”, a combination of volatile organic compounds (VOCs)
produced by the human metabolism and environmental perturbations.
Nevertheless, due to a lack of alternative analytical techniques most of
the traditional diagnostic methods are still based on invasive techniques,
e.g. using blood or tissue samples.
During the last decade, the ion mobility spectrometer combined with a
multi-capillary column (MCC/IMS) has become an established, inexpen-
sive, and non-invasive bioanalytics technique for detecting VOCs with var-
ious potential applications in medical research. To pave the way for this
technology towards daily usage in medical practice, different challenges
still have to be solved. One of the main challenges is to establish an au-
tomated framework optimizing the processing algorithms in the pipeline
yielding to an optimal performance for the final goals: Disease prediction
and biomarker detection.
Although equivalent computational methods and standard procedures ex-
ist for other biomedical applications (e.g. sequence and microarray anal-
ysis) we still are lacking such a standard protocol in breath research. In
four recently published papers presented here[HBJ12, HKD+13, HSP+12,
SHBB13] we aimed at solving this challenge.

1 Introduction

Developed in the early 1970, the ion mobility spectrometers (IMS) has mainly
been applied in the military domain, e.g. for detecting explosives. The res-
olution and precision was dramatically increased by combining the IMS with
the multi capillary column for pre-separation. This technology leap opened up
the horizon to many other applications. Furthermore, the IMS is inured to the
moisture in exhaled air, comparably cheap, robust, and easy to use in every day
practice, which makes it especially interesting for biotechnological and medical
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applications [Bau09]. Due to these developments the IMS can now also be used
for patient breath analysis and monitoring [WLM+11], identification of bacte-
rial strains and fungi [BW06, PJV+11] and cancer sub-typing [WLM+11], just
to name a few.

Figure 1: Result of the MCC/IMS measurement after preprocessing.

2 Computational Methods for MCC/IMS Data

Many challenges on the way to a comprehensive standard procedure in breath
research have been solved in the last decade: the definition of a data format,
the pre-processing (RIP detailing, smoothing, de-noising), the visualization and
the evaluation using simple statistical techniques, see Figure 1. Nevertheless,
to enable reliable disease prediction and biomarker detection we require an
automated framework, following a standard protocol of carefully selected and
adapted processing steps, see Figure 2.
Pre-processing and peak detection: With the increasing amount of per-

formed measurements, a reliable and robust automated peak detection without
manual intervention is an inevitable processing step. Although sophisticated
peak detection approaches have been studied extensively in the last five to ten
years, non of the proposed methods prevailed. This is most likely due to the
fact that the assessment of the quality of these techniques has been done, if at
all, solely by visual comparison with the manually selected peak lists[HSP+12].
Therefore, in a recent study we carefully evaluated four state-of-the-art ap-
proaches for automated MCC/IMS-based peak detection: local maxima search,
watershed transformation, merged peak cluster localization, and peak model
estimation (PME). We manually generated a gold standard with the aid of
a domain expert (manual) and compared the performance of the automated
methods with respect to two distinct criteria: (1) we systematically studied
the classification performance of established machine learning methods (linear
support vector machine and random forest) trained on the four peak detectors’
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Figure 2: Automated framework for data analysis in breath research.

results and (2) we investigated the variance and robustness of the results, re-
garding overfitting and training set perturbations. In summary, all methods,
though small differences exist, perform equally well in terms of classification
error and are similarly robust against perturbations, while PME is most robust
against overfitting. However, the trade off between a slightly higher accuracy
(manual) and a huge increase in processing speed (automatic) has to be consid-
ered carefully [HKD+13].

Database and analysis platform: Another main part of an automated
framework for MCC/IMS research is a flexible and comprehensive centralized
data repository. To identify discriminating compounds as biomarkers, it is in-
evitable to have a clear understanding of the detailed composition of human
breath and its potential confounders. Therefore, the challenge in MCC/IMS
database development is not storing metabolic data in a fixed scheme but rather
flexibly storing a huge set of heterogeneous clinical variables, varying for each
study. To tackle this problem, we designed a comprehensive database applica-
tion and analysis platform (IMSDB), combining metabolic maps with hetero-
geneous biomedical data in a well-structured manner. The model consists of a
hybrid of the entity-attribute-value (EAV) model and the EAV-CR, incorporat-
ing the concepts of classes and relationships. Additionally, the IMSDB offers
an intuitive user interface providing easy and quick access to the platform’s
functionalities: automated data integration and integrity validation, versioning
and roll-back strategy, data retrieval as well as semi-automatic data mining
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and basic machine learning capabilities. The standalone software system is
based on the programming language Java and the WEKA learning package
[HFH+09]. In conclusion, we are providing an intuitive software system for
biologists, chemists, physicists and physicians conducting MCC/IMS-based re-
search and diagnostics without demanding any computer skills [SHBB13].
Statistical learning: Finally, with respect to modern biomarker research and
clinical diagnostics, one of the most important tasks is the automated classi-
fication of patient-specific data sets into different groups, e.g. healthy or not.
In a recent pilot study, we investigated the potential of sophisticated statistical
learning techniques for (1) VOC-based feature selection and (2) supervised clas-
sification on metabolic MCC/IMS data. Therefore, we utilized breath measure-
ments of patients, either suffering from chronic obstructive pulmonary disease
(COPD) or both, COPD and bronchial carcinoma (COPD+BC), as well as a
healthy control group (CG). When distinguishing healthy from COPD all tested
methods showed a reasonable performance between 84% (decision tree) and 94%
(random forest) accuracy. However, the results indicated that further exami-
nation of the impact of bronchial carcinoma on COPD/no-COPD classification
performance is necessary. The set of most important VOC features found by
random forest coincided to a large extend with previous studies. Our findings
demonstrate a generally high but improvable potential of statistical learning
methods when applied to well-structured, medical MCC/IMS data. For more
details see [HBJ12].

3 Summary

The MCC/IMS has become an established inexpensive, non-invasive bioanalyt-
ics technology for detecting VOCs with various potential applications in medical
research. To pave the way for this analytical technique towards daily usage in
medical practice, an automated framework following a standard protocol of
carefully selected and adapted processing steps is needed. Therefore, our re-
search focuses on the establishment of such a framework, with regard to the
overall goal of disease prediction and biomarker detection. In this context,
we evaluated different automated peak detection approaches and reported the
peak model estimation as most robust [HKD+13]. The IMSDB combines two
powerful computational tools, an extendible database as well as a machine learn-
ing toolkit, fully accessible through an intuitive graphical user interface, which
will accelerate and expand the opportunities of clinical diagnostic research in
the near future[SHBB13]. Finally, the application of sophisticated statistical
learning methods for disease prediction and biomarker detection enables us to
optimize the single steps of the proposed computational standard procedure for
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breath research. The combination of the MCC/IMS methodology and the pro-
posed automated standard procedure has the potential to successfully address
a broad range of biomedical questions.
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Abstract: Mutually exclusive splicing is an important 
mechanism in a wide range of eukaryotic branches to expand 
proteome diversity but the extent of its distribution within a 
single species and its evolutionary conservation is unknown. 
Here, we present a genome-wide analysis of mutually exclusive 
spliced exons (MXEs) in Drosophila melanogaster at 
unprecedented depth. Most of the new MXE candidates are 
supported by evolutionary conservation, transcriptome data 
analysis and identification of competing RNA secondary 
structural elements. The enrichment of the genes with MXEs in 
transmembrane transporters and ion channel activity is 
consistent with findings in human, although the MXEs appeared 
independently and in non-homologous genes, supporting the 
idea of a universal benefit of adapting ion channel and receptor 
properties by tandem exon duplications. The comparison of the 
mutually exclusive spliced exomes within the Drosophila clade 
shows high numbers of MXE gain and loss events implicating a 
role of these processes in speciation. 

1 Introduction 

Alternative processing of primary RNA transcripts is an important driver of 
increased proteome diversity and regulated gene expression in eukaryotes. 
Alternative splicing has been reported for alveolates and stramenopiles, green 
algae and plants, the cryptophyte Guillardia theta and the chlorarachniophyte 
Bigelowiella natans, fungi and metazoa, and has therefore been an essential 
characteristic of the last common ancestor of the eukaryotes. The prevalence of 
the splice types and the overall number of events strongly differ between 
branches and species. Mutually exclusive splicing is a particularly interesting 

Hatje et al. 



type of generating alternative transcripts: The Drosophila Down Syndrome 
Cell Adhesion Molecule (Dscam) gene contains 95 mutually exclusive spliced 
exons (MXEs) representing the most extensively alternatively spliced gene 
known. Mutations in MXEs and regions regulating their splicing cause human 
diseases like the Timothy syndrome, cardiomyopathy or cancer. Mutually 
exclusive splicing has been shown to be regulated by competing RNA 
secondary structures. We reported on the continuous gain and loss of MXEs 
across twelve Drosophila species [KH13]. 

2 Results and Discussion 

The algorithm that has been developed for the search for MXEs is based on 
criteria derived from biological knowledge. A) MXEs must be translated in the 
same reading frame and the splice sites must be compatible. B) MXEs must 
have about the same length, because they code for the same structural region in 
the resulting protein, and length differences are only possible in loop regions. 
C) The protein sequences coded by the MXEs are supposed to be similar, 
because they code for the same region in the protein and developed most 
probably by exon duplication during evolution. As input the software requires 
the exon-intron structure of the gene. Subsequently the surrounding introns of 
each original exon are searched for candidates for MXEs. The new algorithm 
is fully integrated into WebScipio [FO08], the web interface to the Scipio 
software. Figure 1 shows clusters of MXEs as found in the DSCAM gene of 
Drosophila melanogaster. 

 

Figure 1. The DSCAM gene containing clusters of MXEs (coloured bars). Constitutive 
exons and introns are denoted by dark grey and light grey bars, respectively. 

To characterize the mutually exclusive spliced exome of Drosophila 
melanogaster, we identified 1,297 exons that are mutually exclusive in 
annotated isoforms of the same gene. Of these 291 had similar length and 
sequence, including 218 internal MXEs. We predicted 539 exons of similar 
length and sequence that could be spliced in a mutually exclusive way (two 
times the annotated exons; Fig. 2). 419 of the MXE candidates were internal 
including 218 of the already annotated MXEs. Evidence for the predicted 
MXE candidates was obtained through additional data (Fig. 2): A) Mapping of 
EST and RNA-Seq data. B) Conservation of the MXE candidates in other 

Hatje et al. 



arthropods. C) Ab initio prediction of exonic regions in the respective introns 
using AUGUSTUS. D) Identification of competing RNA secondary structures. 
Of the internal MXEs 57% were supported by multiple data types, 21% were 
supported by EST data. Of the 44 newly predicted internal MXEs eight were 
supported by EST and/or RNA-Seq data. 94.5% of the annotated and 
reconstructed internal MXEs and 76.6% of the total predicted internal MXEs 
are evolutionarily conserved in at least one of the eighteen further analyzed 
species. 

 

Figure 2. The mutually exclusive exome of Drosophila melanogaster. All genes 
containing predicted MXEs are listed. 

In order to determine the extent of conservation within the Drosophila 
mutually exclusive spliced exomes we compared the data from 
D.melanogaster (dmel) with the reconstructed corresponding exomes of 11 
further Drosophila species (Fig. 3A). In total, 2640 clusters were identified 
most of which are shared among several species, resulting in 770 unique 
clusters. Surprisingly, many of the clusters are unique to one of these groups 
like 164 clusters within the Drosophila subgenus group or 95 clusters within 
the obscura group. Only 68 clusters are conserved in all twelve species. To 
determine exon gain and loss during the evolution of the Drosophila species 
we counted these events based on maximum parsimony requiring the least 
exon loss events (Fig. 3B). The last common ancestor of the Drosophila 
species contained at least 186 clusters of MXEs. 456 clusters are unique to any 
of the Drosophilas and 111 clusters have been gained in certain branches. 
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Figure 3. A) The Venn diagrams48 show the number of clusters of MXEs shared 
between species and subsets of species groups..B) The gain and loss of clusters of 
MXEs plotted onto the evolutionary tree of the Drosophila species. 

3 Conclusion 

Our analysis of the mutually exclusive exome of D.melanogaster considerably 
increased the number of mutually exclusive splicing events. Specifically, we 
have identified two times more internal MXE candidates than already 
annotated of which almost 80% are supported by evolutionary conservation or 
experimental transcript data. 
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Abstract: We have proposed a novel triclustering algorithm δ-
TRIMAX to mine 3D gene expression data sets by introducing a
mean squared residue (MSR) score as a measure of coherence of
the resultant triclusters. Applying our proposed algorithm on a
time series gene expression dataset from an estrogen induced breast
cancer cell, we identified key drivers for each resultant tricluster
and found a number of hub genes that are known to be associated
with breast cancer or estrogen responsive elements. Additionally,
our coregulation analysis reveals synergistic regulatory effects of
transcription factors.

1 Introduction

With the advent of microarray and other high-throughput technologies,
it is feasible to measure expression profiles of thousands of genes across a
set of samples and a set of time points. Exploratory approaches facilitate
to analyze such high-throughput datasets and thus help to understand
the phenotype of a cell. Coexpression analysis is instrumental in identi-
fying genes that exhibit similar expression profiles in molecular networks.
Highly interconnected genes in such lists of coexpressed genes are often
called hub genes, the analysis of which may reveal underlying disease
mechanisms. Clustering algorithms are useful to extract groups of genes
or samples having similar expression profiles over all samples or genes,
respectively. However, genes are not necessarily similarly expressed over
all samples. To find local patterns in two-dimensional gene expression
datasets, biclustering algorithms are used. However, to detect groups
of genes that are coexpressed over a subset of samples during a subset
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of time points, triclustering algorithms are required. Attempts to ap-
ply biclustering approaches to higher dimensional data would result in a
disrupture of the time-dependent structure [SSW+07] and in an inappro-
priate amalgamation of the different dimensions, requiring extra efforts
for postprocessing of the results. In a recent work we have proposed one
triclustering algorithm δ-TRIMAX that aims to find triclusters from such
3D gene expression datasets [BHM+13]. We have delineated the coherence
of a tricluster by introducing a novel measurement, called mean squared
residue (MSR) score; each resultant tricluster must have an MSR score
below a threshold δ [BHM+13]. In this work we have applied δ-TRIMAX
on a time series gene expression dataset from an estrogen-induced breast
cancer cell line to apprehend the underlying disease mechanisms, regula-
tory effects of transcription factors etc. Additionally, we have compared
the capability of δ-TRIMAX with that of an existing triclustering algo-
rithm using an artificial dataset and a real life dataset.

2 Method

Suppose D (G × C × T) represents a 3D gene expression dataset contain-
ing G, C and T number of genes, samples and time points, respectively.
M(I, J, K) is a tricluster where I ⊆ G, J ⊆ C and K ⊆ T. We define Mean
Squared Residue (MSR) to estimate the quality of a tricluster, i.e. the
level of coherence among the elements of a tricluster as follows [BHM+13]:
MSR = 1

|I||J||K|
∑

i∈I,j∈J,k∈K(mijk −miJK −mIjK −mIJk + 2mIJK)2,

where each element of the dataset is mijk and miJK , mIjK , mIJk cor-
respond to the mean expression value of ith gene, jth sample, kth time
point, respectively. mIJK represents the mean over all genes, samples and
time points. For further details of the method and for a description of the
whole workflow, we refer to the original publication [BHM+13].

3 Results and Conclusions

For validation of our algorithm, we have applied it first on a synthetic
dataset with implanted triclusters and different levels of noise. Comparing
δ-TRIMAX with another algorithm, we found that δ-TRIMAX was more
reliable in re-identifying the artificial triclusters. We have then applied our
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algorithm on a time series gene expression dataset from estrogen-induced
breast cancer cells to understand the underlying mechanisms of transcrip-
tional regulation during different stages of estrogen response [CMS+06].
We have compared the performance of our algorithm with that of an
existing algorithm in terms of coverage, statistical difference from back-
ground (SDB) and triclustering quality index (TQI) using the real life
dataset [BHM+13]. We could demonstrate that δ-TRIMAX outperforms
the existing algorithm according to each of these criteria. To assess the
biological significance of genes belonging to each resultant tricluster we
performed Gene Ontology biological process (GOBP) and KEGG path-
way enrichment analysis. We have observed GOBP enrichment for genes
belonging to each tricluster. We used the singular value decomposition
(SVD) method to represent each tricluster by its eigen gene. Then we de-
tected hub genes for the co-expression network of each resultant tricluster
by calculating Pearson correlation coefficients between eigen gene and ex-
pression values of each gene of a tricluster over the samples and time points
that are present in that tricluster. The genes (more specifically, the probe-
set IDs) were sorted in descending order of correlation coefficients. From
the 10 topmost probeset IDs, hub genes of each tricluster were identified.
This way, we have identified NPC1L1, TMEM161B-AS1, POU5F1P3,
POU5F1P4, POU5F1B, CCL2 as those hub-genes that are coexpressed
over all-time points and samples. The chemokine CCL2 has already been
reported to play a role in breast cancer development [TCW+12]. Isoforms
or pseudogenes of the transcription factor POU5F1 / OCT4, in particu-
lar POU5F1P4, have been found to play specific roles in other types of
cancer [WGZ+13], while our results suggest for three of them that they
are involved in breast cancer as well. The intestinal cholesterol absorp-
tion protein NPC1L1 has already been inferred to be a target of liver X
receptors (LXR) which play an instrumental role in breast carcinogene-
sis [VDI+04,DTT+06]. Additionally, a previous study infers that estrogen
plays an important role in the upregulation of NPC1L1 [VCR07]. It is
already known that the intestinal cholesterol absorption can be used as
a drug target for reducing the plasma cholesterol level below the thresh-
old where it promotes the development of tumors and aggravates their
aggressiveness [LDM+11,TD03]. Thus we can hypothesize NPC1L1 as a
potential drug target to prevent the growth of breast tumors. We have
identified such key drivers for other triclusters as well and found that many
of those hub genes are already reported to be associated with breast cancer
or estrogen responsive elements. Moreover we performed TFBS enrich-
ment analysis to identify statistically enriched transcriptional regulatory
elements in the promoter regions of coexpressed genes using the TRANS-

Bhar et al. 



FAC library (version 2009.4). From this analysis potential coregulation of
the coexpressed genes could be inferred. The TFBS found to be enriched
also suggested synergistic regulatory effects of transcription factors such
as CREB, ATF3, Sp1 etc., which are already known to play crucial roles
in breast cancer. We thus feel that our triclustering approach is very suit-
able to provide biologically meaningful hypotheses, in the example shown
about the development of breast cancer.

References

[BHM+13] A Bhar, M Haubrock, A Mukhopadhyay, U Maulik, S Bandyopad-
hyay, and E Wingender. Coexpression and coregulation analysis of
time-series gene expression data in estrogen-induced breast cancer
cell. Algorithms for molecular biology, 8(1), March 23 2013.

[CMS+06] J S Carroll, C A Meyer, J Song, W Li, T R Geistlinger, J Eeck-
houte, A S Brodsky, E K Keeton, K C Fertuck, G F Hall, Q Wang,
S Bekiranov, V Sementchenko, E A Fox, P A Silver, T R Gingeras,
X S Liu, and M Brown. Genome-wide analysis of estrogen receptor
binding sites. Nature Genetics, 38(11):1289–1297, November 2006.

[DTT+06] C Duval, V Touche, A Tailleux, J C Fruchart, C Fievet, V Clavey,
B Staels, and S Lestavel. Niemann-Pick C1 like 1 gene expression is
down-regulated by LXR activators in the intestine. Biochemical and
Biophysical Research Communications, 340(4):1259–1263, February
24 2006.

[LDM+11] G Llaverias, C Danilo, I Mercier, K Daumer, F Capozza, T M
Williams, F Sotgia, M P Lisanti, and P G Frank. Role of cholesterol
in the development and progression of breast cancer. The American
Journal of Pathology, 178(1):402–412, January 2011.

[SSW+07] J Supper, M Strauch, D Wanke, K Harter, and A Zell. EDISA:
extracting biclusters from multiple time-series of gene expression
profiles. BMC Bioinformatics, 8(334), September 12 2007.

[TCW+12] A Tsuyada, A Chow, J Wu, G Somlo, P Chu, S Loera, T Luu, A X
Li, X Wu, W Ye, S Chen, W Zhou, Y Yu, Y Z Wang, X Ren, H Li,
P Scherle, Y Kuroki, and S E Wang. CCL2 mediates cross-talk
between cancer cells and stromal fibroblasts that regulates breast
cancer stem cells. Cancer Research, 72(11):2768–79, June 1 2012.

[TD03] S D Turley and J M Dietschy. The intestinal absorption of biliary
and dietary cholesterol as a drug target for lowering the plasma
cholesterol level. Preventive Cardiology, 6(1):29–33, Winter 2003.

Bhar et al. 



[VCR07] M A Valasek, S L Clarke, and J J Repa. Fenofibrate reduces
intestinal cholesterol absorption via PPARα-dependent modula-
tion of NPC1L1 expression in mouse. Journal of Lipid Research,
48(12):2725–2735, December 2007.

[VDI+04] D M Vigushin, Y Dong, L Inman, N Peyvandi, J P Alao, C Sun,
S Ali, E J Niesor, C L Bentzen, and R C Coombes. The nuclear oxys-
terol receptor LXRalpha is expressed in the normal human breast
and in breast cancer. Medical Oncology, 21(2):123–131, 2004.

[WGZ+13] L Wang, Z Y Guo, R Zhang, B Xin, R Chen, J Zhao, T Wang,
W H Wen, L T Jia, L B Yao, and A G Yang. Pseudogene OCT4-
pg4 functions as a natural micro RNA sponge to regulate OCT4
expression by competing for miR-145 in hepatocellular carcinoma.
Carcinogenesis, 00(00), May 23 2013.

Bhar et al. 


	Table of Contents
	Exploiting structural information for target assessmentAndrea Volkamer and Matthias Rarey
	Versatile prioritization of candidate disease genes or other molecules with NetworkPrioritizerTim Kacprowski, Nadezhda T. Doncheva, Mario Albrecht
	Learning Gene Network Structure from Time Laps Cell Imaging in RNAi Knock-DownsHenrik Failmezger and Paurush Praveen and Achim Tresch and Holger Fröhlich
	GenomeTools: a comprehensive software library for efficient processing of structured genome annotationsGordon Gremme, Sascha Steinbiss and Stefan Kurtz
	TALEs of virulence and biotechnologyJan Grau, Annett Wolf, Maik Reschke, Ulla Bonas, Stefan Posch, and Jens Boch
	Paving the Way for Automated Clinical Breath Analysis and Biomarker DetectionAnne-Christin Hauschild, Jörg Ingo Baumbach, Jan Baumbach
	Continuous rapid expansion of the mutually exclusive spliced exome in Drosophila speciesKlas Hatje and Martin Kollmar
	Application of a Novel Triclustering Method (TRIMAX) to Mine 3D Gene Expression Data of Breast Cancer CellsAnirban Bhar, Martin Haubrock, Anirban Mukhopadhyay and Edgar Wingender

