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Abstract: We have proposed a novel triclustering algorithm δ-
TRIMAX to mine 3D gene expression data sets by introducing a
mean squared residue (MSR) score as a measure of coherence of
the resultant triclusters. Applying our proposed algorithm on a
time series gene expression dataset from an estrogen induced breast
cancer cell, we identified key drivers for each resultant tricluster
and found a number of hub genes that are known to be associated
with breast cancer or estrogen responsive elements. Additionally,
our coregulation analysis reveals synergistic regulatory effects of
transcription factors.

1 Introduction

With the advent of microarray and other high-throughput technologies,
it is feasible to measure expression profiles of thousands of genes across a
set of samples and a set of time points. Exploratory approaches facilitate
to analyze such high-throughput datasets and thus help to understand
the phenotype of a cell. Coexpression analysis is instrumental in identi-
fying genes that exhibit similar expression profiles in molecular networks.
Highly interconnected genes in such lists of coexpressed genes are often
called hub genes, the analysis of which may reveal underlying disease
mechanisms. Clustering algorithms are useful to extract groups of genes
or samples having similar expression profiles over all samples or genes,
respectively. However, genes are not necessarily similarly expressed over
all samples. To find local patterns in two-dimensional gene expression
datasets, biclustering algorithms are used. However, to detect groups
of genes that are coexpressed over a subset of samples during a subset



of time points, triclustering algorithms are required. Attempts to ap-
ply biclustering approaches to higher dimensional data would result in a
disrupture of the time-dependent structure [SSW+07] and in an inappro-
priate amalgamation of the different dimensions, requiring extra efforts
for postprocessing of the results. In a recent work we have proposed one
triclustering algorithm δ-TRIMAX that aims to find triclusters from such
3D gene expression datasets [BHM+13]. We have delineated the coherence
of a tricluster by introducing a novel measurement, called mean squared
residue (MSR) score; each resultant tricluster must have an MSR score
below a threshold δ [BHM+13]. In this work we have applied δ-TRIMAX
on a time series gene expression dataset from an estrogen-induced breast
cancer cell line to apprehend the underlying disease mechanisms, regula-
tory effects of transcription factors etc. Additionally, we have compared
the capability of δ-TRIMAX with that of an existing triclustering algo-
rithm using an artificial dataset and a real life dataset.

2 Method

Suppose D (G × C × T) represents a 3D gene expression dataset contain-
ing G, C and T number of genes, samples and time points, respectively.
M(I, J, K) is a tricluster where I ⊆ G, J ⊆ C and K ⊆ T. We define Mean
Squared Residue (MSR) to estimate the quality of a tricluster, i.e. the
level of coherence among the elements of a tricluster as follows [BHM+13]:
MSR = 1

|I||J||K|
∑

i∈I,j∈J,k∈K(mijk −miJK −mIjK −mIJk + 2mIJK)2,

where each element of the dataset is mijk and miJK , mIjK , mIJk cor-
respond to the mean expression value of ith gene, jth sample, kth time
point, respectively. mIJK represents the mean over all genes, samples and
time points. For further details of the method and for a description of the
whole workflow, we refer to the original publication [BHM+13].

3 Results and Conclusions

For validation of our algorithm, we have applied it first on a synthetic
dataset with implanted triclusters and different levels of noise. Comparing
δ-TRIMAX with another algorithm, we found that δ-TRIMAX was more
reliable in re-identifying the artificial triclusters. We have then applied our



algorithm on a time series gene expression dataset from estrogen-induced
breast cancer cells to understand the underlying mechanisms of transcrip-
tional regulation during different stages of estrogen response [CMS+06].
We have compared the performance of our algorithm with that of an
existing algorithm in terms of coverage, statistical difference from back-
ground (SDB) and triclustering quality index (TQI) using the real life
dataset [BHM+13]. We could demonstrate that δ-TRIMAX outperforms
the existing algorithm according to each of these criteria. To assess the
biological significance of genes belonging to each resultant tricluster we
performed Gene Ontology biological process (GOBP) and KEGG path-
way enrichment analysis. We have observed GOBP enrichment for genes
belonging to each tricluster. We used the singular value decomposition
(SVD) method to represent each tricluster by its eigen gene. Then we de-
tected hub genes for the co-expression network of each resultant tricluster
by calculating Pearson correlation coefficients between eigen gene and ex-
pression values of each gene of a tricluster over the samples and time points
that are present in that tricluster. The genes (more specifically, the probe-
set IDs) were sorted in descending order of correlation coefficients. From
the 10 topmost probeset IDs, hub genes of each tricluster were identified.
This way, we have identified NPC1L1, TMEM161B-AS1, POU5F1P3,
POU5F1P4, POU5F1B, CCL2 as those hub-genes that are coexpressed
over all-time points and samples. The chemokine CCL2 has already been
reported to play a role in breast cancer development [TCW+12]. Isoforms
or pseudogenes of the transcription factor POU5F1 / OCT4, in particu-
lar POU5F1P4, have been found to play specific roles in other types of
cancer [WGZ+13], while our results suggest for three of them that they
are involved in breast cancer as well. The intestinal cholesterol absorp-
tion protein NPC1L1 has already been inferred to be a target of liver X
receptors (LXR) which play an instrumental role in breast carcinogene-
sis [VDI+04,DTT+06]. Additionally, a previous study infers that estrogen
plays an important role in the upregulation of NPC1L1 [VCR07]. It is
already known that the intestinal cholesterol absorption can be used as
a drug target for reducing the plasma cholesterol level below the thresh-
old where it promotes the development of tumors and aggravates their
aggressiveness [LDM+11,TD03]. Thus we can hypothesize NPC1L1 as a
potential drug target to prevent the growth of breast tumors. We have
identified such key drivers for other triclusters as well and found that many
of those hub genes are already reported to be associated with breast cancer
or estrogen responsive elements. Moreover we performed TFBS enrich-
ment analysis to identify statistically enriched transcriptional regulatory
elements in the promoter regions of coexpressed genes using the TRANS-



FAC library (version 2009.4). From this analysis potential coregulation of
the coexpressed genes could be inferred. The TFBS found to be enriched
also suggested synergistic regulatory effects of transcription factors such
as CREB, ATF3, Sp1 etc., which are already known to play crucial roles
in breast cancer. We thus feel that our triclustering approach is very suit-
able to provide biologically meaningful hypotheses, in the example shown
about the development of breast cancer.
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